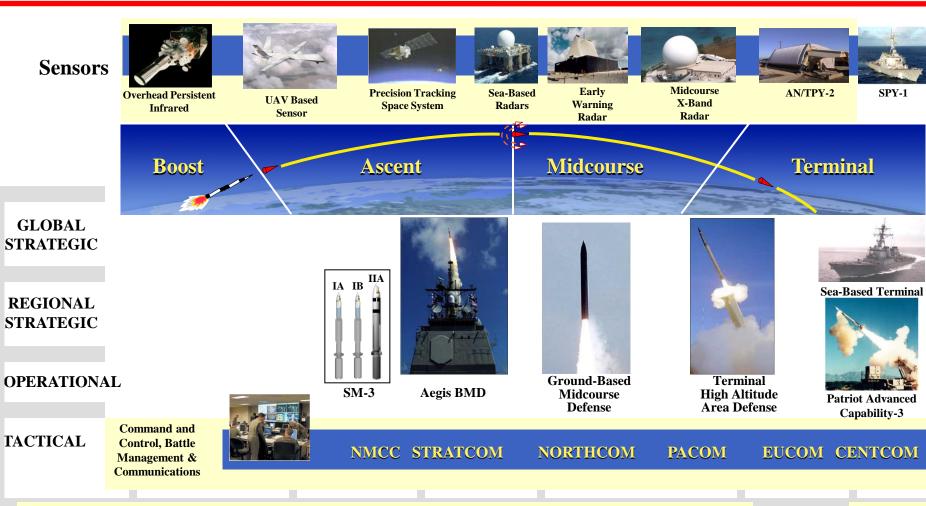
Command, Control, Communications, Computers, Intelligence, Surveillance and Reconnaissance (C4ISR)

DISTRIBUTION STATEMENT A


21 July 2011

Mr. Richard Ritter

Program Executive for C4ISR

C4ISR Enables the BMDS

THREAT

EVALUATION

SENSOR & WEAPONS

ASSIGNMENT

PLANNING

SURVEILLANCE/

DETECTION

TRACKING

/ ID

ASSESS

ENGAGE

C2BMC (MDA/BC)

- 24/7/365 world-wide operations
- Develop and incrementally field global C2BMC capabilities
 - Situational Awareness
 - BMDS System Level Planner
 - Global Engagement Manager
- Provide BMDS Communications Network, depend on DISA for long-haul communications
- Perform concurrent operations and test of the BMDS

- Ties all Elements together to form the BMD System
- Enables integrated BMDS across all phases of flight: Early Intercept, Midcourse, and Terminal
- Deliberate, collaborative, and crisis action BMD planning at all echelons
- Situational Awareness at all command levels
- Global Engagement Management (GEM) support for Regional sensor management and engagement coordination
- Survivable global communications network (MILSATCOM & leased fiber optic cable)
- Provides communications and interfaces (fixed and/or mobile) and remotely controls deployed AN/TPY-2 radars (e.g., Japan, Israel)

C2BMC provides means for integrating BMDS for warfighters, with a layered defense, and optimizing sensors and weapons

C2BMC Future Technology Areas

Spiral 8.2

- Sensor management, Track Management, Weapon Assignment
- Other areas could be addressed with LM

Spiral 8.4

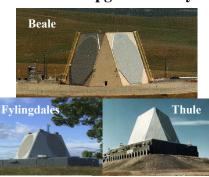
- Debris mitigation, Integrated Discrimination, RF/IR sensor management, Sensor planning, weapons allocation, data allocation techniques
- S8.4 to be competed, opportunities to partner with competitors

R&D opportunities will address evolving C2BMC mission

BMDS Radars (MDA/SN)

Missions & Functions

AN/TPY-2 Radar


Terminal Mode (TM) Mission

- Part of THAAD Weapon System
- · Detects, tracks, and discriminates
- Communicates with THAAD fire control and interceptor to destroy threatening missile

Forward-Based Mode (FBM) Mission

- · Detection close to threat origin
- Tracks & reports to C2BMC
- Target destroyed by Ground-Based Interceptor or Standard Missile

Upgraded Early Warning Radars (UEWR)

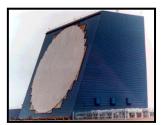
Missions

- ITW/AA: Provides early warning of Ballistic missile attack
- SSN: Detects, identifies &tracks man-made objects in earth orbit
- BMDS: GMD Midcourse Sensor
 - Acquisition
 - Tracking
 - Classification

Sea-Based X-Band Radar (SBX)

Mission

- GMD Midcourse Sensor
- Cued search, acquisition, track, discrimination, and hit/kill assessment
- Performs precision track
- Provides data on all target complexes to GMD interceptors


GBR-P Radar

Mission

- BMDS test program asset
- Performs truth data collection

COBRA DANE Upgrade Radar (CDU)

Eareckson AFS, Shemya AK

Missions

- Data collection on ICBM/SLBM tests in support of START2 & INF treaties and other scientific and technical efforts
- Space Surveillance
- · GMD Midcourse Sensor

SN Technology Needs

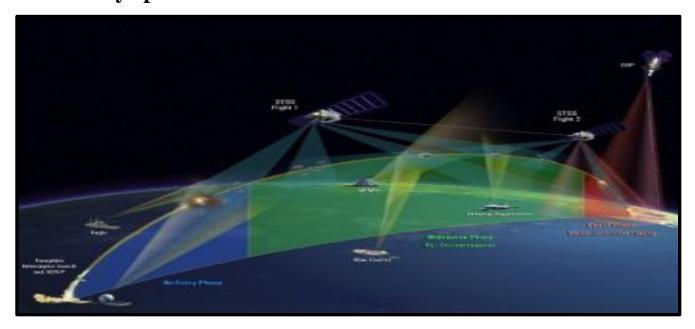
- Algorithms to track and classify threat objects in a dense scene background
- Enhancements to tracking algorithms and signal processing to minimize radar resources in a dense scene background and/or raid scenario
- Tools for evaluating and determining optimal radar presets and performance for a variety of environmental and tactical considerations
- Modeling and simulation of complex environmental and target phenomenology sensed by the radars for use in digital and HWIL applications

ABIR (MDA/CA)

<u>Objective</u>: Incrementally demonstrate the military utility of early precision tracking of ballistic missiles by airborne sensors

Approach

- Experiments to prove raid size capability
- Pod solution to incorporate early operational concepts
- Develop advanced sensor
- Establish transition plan and CONOPS with a joint MDA/AF/Navy support cell


ABIR Technology Needs

- Methodologies for Accurate Scene Generation of Target Characteristics as Seen by an Airborne Platform through Dynamic Atmospheric Conditions
- Methodologies for Accurate Scene Generation of Complex Target Plume Characteristics
- Methodologies for Developing Extremely Large IR Scene Projectors
- Methodologies for Partial Frame Correlation of Multiple Sensors
- Smart Infrared Focal Plane Arrays and Advanced Electronics

Space

<u>Objective</u>: Incrementally demonstrate the military utility of precision tracking of ballistic missiles by space sensors

Approach

- Experiments to demonstrate OPIR sensor fusion, sensor cuing, registration, & system track integration
- Evaluate CONOPS, TTPs, web services & data standards

Space Technology Needs

- Methodologies for High Fidelity Simulation of Background and Complex Target Scenes
- Improved Target Signature Modeling (with Plumes)
- Develop automated analysis, registration, sensor and data management, & mission planning/tasking tools
- Improved Clutter Rejection Algorithms
- Establish CONOPS, TTPs, web services & data standards