# Space & Missile Defense Symposium



**DISTRIBUTION STATEMENT A.** Approved for public release; distribution unlimited

### August 15, 2013 Mr. Richard Matlock Program Executive For Advanced Technology Missile Defense Agency

Approved for Public Release 13-MDA-7405 (14 August 13)



13-MDA-7405 (14 August 13)

# **Technology Contributions to the BMDS**



Approved for Public Release 13-MDA-7405 (14 August 13)

### **DV Engineering Context**



DEFENS

ENT OF



### **Planned Technology Investments**

| Investment A                         | rea     | Vision                                                                                                                               |           | Investment Roadmap                                                                                                                                                                                                   |
|--------------------------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Persistent<br>Discrimination         | MTS-C   | Capitalize on persistent,<br>multi-phenomenology<br>sensors to maximize the<br>discrimination capability of<br>our BMDS architecture |           | <ul> <li>Precision tracking demonstrations</li> <li>Discrimination demonstrations</li> <li>Deploy Airborne or Space-based<br/>Prototypes</li> </ul>                                                                  |
| High Power<br>Lasers                 |         | Integrate high power lasers<br>into the BMDS architecture<br>for a broad range of missile<br>defense missions                        | 1×        | <ul> <li>Lab experiments</li> <li>UAV-borne Laser Flight tests</li> </ul>                                                                                                                                            |
| Common Kill<br>Vehicle<br>Technology |         | Develop common kill vehicle<br>technology for insertion into<br>GBI and SM-3 programs that<br>addresses the future threat            |           | <ul> <li>Component R &amp; D</li> <li>Demonstrate prototypes</li> <li>Develop and Deploy<br/>Discriminating and Multi-object<br/>kill vehicles</li> </ul>                                                            |
| Advanced<br>Research                 |         | Pursue high-risk and high<br>pay-off technologies for<br>the next Ballistic Missile<br>Defense System                                |           | <ul> <li>Exploit emerging technologies</li> <li>Partner with our Nation's small<br/>businesses and universities</li> <li>Transform new technologies into<br/>applications for insertion into the<br/>BMDS</li> </ul> |
|                                      | Experin | nentation Proof o                                                                                                                    | f Concept | Development                                                                                                                                                                                                          |



### **Discrimination Sensor Technology**

- Develop and demonstrate discriminating technology through robust tests
- Demonstrate engage-on-remote using Multispectral Targeting System sensors
- Design, build, and integrate advanced sensor upgrades to the sensors
- Evaluate the performance of advanced discrimination algorithms
- Mature sensor technology for multiple applications





# **Common Kill Vehicle Technology**

- Develop modular, open kill vehicle architecture
- Capitalize on the innovation of our industrial base
- Develop scalable technology at the component level in phases
- Integrate and test kill vehicle component technology on a prototype
- Phased transition of discriminating kill vehicle technology to Ground Based Interceptor (GBI) and Standard Missile-3 (SM-3)
- Evolve to a multiple kill vehicle payload for GBI





# **"Smart Buyer" Approach to Acquisition**

#### Advanced Technology Concept Assessment and Model-Based Engineering Approach Exploiting Simulation-Based Tools

- Leverages expertise gained developing government-owned, nonproprietary tools
- Provides leadership with independent assessment of industry-provided concept performance
- Provides options for conducting trade studies to support requirements and concept development, assessment of alternatives, design decisions, and performance assessments
- Provides the foundation for successful development, demonstration, and implementation of emerging BMDS technology



### Integrated Approach Single Source Multiple Uses

# Model-Based Engineering Tools Provide Code Generation for Simulation through Concept Demonstration and Flight



# Matlab/Simulink

#### **OASIS Simitar**

- Flexible platform
- Requirements
- Design architecture
- Simulation
- Algorithm test bed
- Dynamic visualization and data reduction



#### Advanced Systems Engineering Capabilities Exploiting Simulation-Based Tools

- Flexible modeling platform
- Sophisticated algorithm test bed
- Probabilistic variability and monte carlo sampling
- Dynamic visualization and data reduction tools









# **University Engagement / Domestic**

#### **Technical Objectives**

- Fund relevant, advanced Research and Development (R&D) at domestic universities and academic institutions
- Exploit breakthroughs in science to offer robust technical improvements to BMDS
- Build portfolio of revolutionary technology to support and enhance BMDS
- Develop holistic partnerships
- Educate future scientists and engineers



Solid Divert & ACS



High Energy Lasers



Data Fusion and Tracking Algorithms



Plume Signature Modeling



High Velocity Impact Studies



### University Research To Satisfy Missile Defense Needs





### **Technology Contributions To The Missile Defense Architecture**

**BMD Technology Contribution to the BMDS:** 

#### Assess performance

... of advanced concepts through models and simulations prior to and throughout development

#### Bridge warfighter capability gaps

... through the development and demonstration of discriminating technology

#### - Hedge future threats

... through exploration and development of advanced technology for homeland and regional defense









- Develop game changing technology that is:
  - Tangible, Feasible, Fieldable, Deployable, Upgradeable
- Develop through innovative technical and programmatic approaches
- Investments based on warfighter needs, architecture, and threat evaluation
  - Technical drivers 📥 Investment Area 📥 Capability

Past technology investments shape the BMDS of today and tomorrow • Lightweight Exo-Atmospheric Projectile (LEAP) – Standard Missile • STSS – launch-on-remote